# MATHEMATICS (BASIC) - Code No. 241 SAMPLE QUESTION PAPER CLASS - X (2025 - 26)

Maximum marks:80 Time :3 hour

#### **General Instructions**

### Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions. All Questions are compulsory.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- 3. In Section A, Question numbers 1-18 are multiple choice questions (MCQs) and question no.19 and 20 are Assertion- Reason based questions of 1 mark each.
- 4. In Section B, Question numbers 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
- 5. In Section C, Question numbers 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Question numbers 32-35 are long answer (LA) type questions, carrying 05 marks each.
- 7. In Section E, Question numbers 36-38 are case study-based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 8. There is no overall choice. However, an internal choice in 2 questions of Section B, 2 questions of Section C and 2 questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required. Take  $\pi = \frac{22}{7}$  wherever required if not stated.
- 10. Use of calculators is not allowed.

# SECTION - A (Multiple Choice Questions)

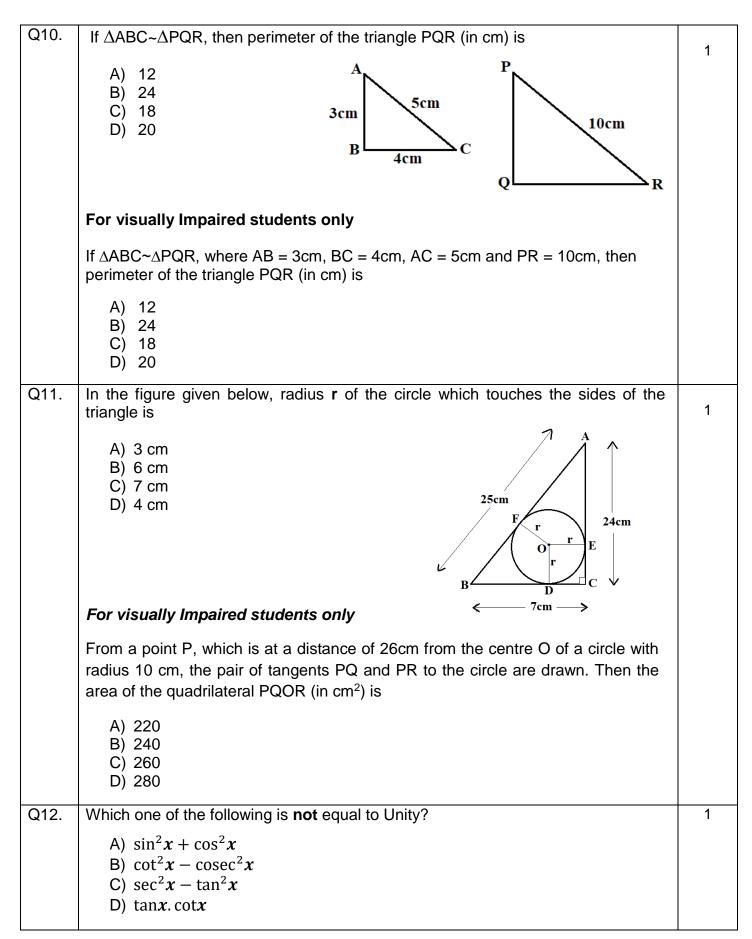
Each MCQ of 1mark, has four options with only one correct option, choose the correct option

| Q. No. | Question                                                       | Marks |
|--------|----------------------------------------------------------------|-------|
| Q1.    | The exponent of 3 in the prime factorization of 2025 is        | 4     |
|        | A) 1                                                           | '     |
|        | B) 2                                                           |       |
|        | C) 3                                                           |       |
|        | D) 4                                                           |       |
| Q2.    | If $2024x + 2025y = 1$ ; $2025x + 2024y = -1$ , then $x - y =$ |       |
|        | A) 0                                                           | 1     |
|        | B) – 2                                                         |       |
|        | C) 2                                                           |       |
|        | D) – 1                                                         |       |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26








| Q3. | The number of polynomials having - 2 and 5 as its zeroes is                                                                              |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | A) one<br>B) two                                                                                                                         | 1 |
|     | C) three D) Infinitely many                                                                                                              |   |
| Q4. | Which of the following is <b>not</b> a quadratic equation?                                                                               | 1 |
|     | A) $(x + 2)^2 = 2(x + 3)$<br>B) $x^2 + 3x = (-1)(1 - 3x^2)$<br>C) $(x + 2)(x - 1) = x^2 - 2x - 3$<br>D) $x^3 - x^2 + 2x + 1 = (x + 1)^3$ | 1 |
| Q5. | The value of $x$ for which $2x$ , $(x + 10)$ and $(3x + 2)$ are the three consecutive terms of an AP is                                  | 1 |
|     | A) 6<br>B) -6<br>C) -2<br>D) 2                                                                                                           |   |
| Q6. | If 1 + 2 + 3 + 4 +···+ 50 = 25 <b>k</b> , then <b>k</b> =                                                                                | 1 |
|     | A) 50<br>B) 51<br>C) 49<br>D) 26                                                                                                         |   |
| Q7. | The distance between the points (cos30°, sin30°) and (cos60°, – sin 60°) is                                                              | 1 |
|     | A) 0 unit B) $\sqrt{3}$ units C) 1 unit D) $\sqrt{2}$ units                                                                              | 1 |
| Q8. | The co-ordinates of the point which is mirror image of the point ( $-3$ , 5) about $x$ -axis are                                         | 1 |
|     | A) (3, 5)<br>B) (3, -5)<br>C) (-3, -5)<br>D) (-3, 5)                                                                                     |   |
| Q9. | If in $\Delta ABC$ and $\Delta DEF$ , $\frac{AB}{EF} = \frac{AC}{DE}$ then they will be similar when                                     | 1 |
|     | A) $\angle A = \angle D$<br>B) $\angle A = \angle E$                                                                                     | ' |
|     | C) $\angle C = \angle F$<br>D) $\angle B = \angle E$                                                                                     |   |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page **2** of **11** 





<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26





| Q13. | Consider the following frequency distribution |              |              |              |               | 1                                          |       |
|------|-----------------------------------------------|--------------|--------------|--------------|---------------|--------------------------------------------|-------|
|      | Class                                         | 0 – 5        | 5 – 10       | 10 – 15      | 15 – 20       | 20 – 25                                    | 1     |
|      | Frequency                                     | 11           | 12           | 13           | 9             | 11                                         |       |
|      | The upper lim                                 | nit of media | n class is   |              |               |                                            |       |
|      | A) 10                                         |              |              |              |               |                                            |       |
|      | B) 13                                         |              |              |              |               |                                            |       |
|      | C) 15<br>D) 20                                |              |              |              |               |                                            |       |
|      | D) 20                                         |              |              |              |               |                                            |       |
| Q14. | Let empirical <b>a</b> (Median) = N           |              |              |              | sures of cent | tral tendency be                           | 1     |
|      | A) 11                                         |              |              |              |               |                                            |       |
|      | B) 12                                         |              |              |              |               |                                            |       |
|      | C) 13                                         |              |              |              |               |                                            |       |
|      | D) 14                                         |              |              |              |               |                                            |       |
| Q15. | From an exter of Q from the                   |              | _            | <del>-</del> |               | cm and the distance cm) is                 | e 1   |
|      | A) 10                                         |              |              |              |               |                                            |       |
|      | B) 5                                          |              |              |              |               |                                            |       |
|      | C) 12<br>D) 7                                 |              |              |              |               |                                            |       |
|      | ,                                             |              |              |              |               |                                            |       |
| Q16. | In the given fi<br>O and diamet               | _            | <del>-</del> |              |               | o a circle with centre                     | e   1 |
|      | A) 25°                                        |              |              |              | Ą             |                                            |       |
|      | B) 30°                                        |              |              |              | 1             |                                            |       |
|      | C) 20°                                        |              |              |              |               | ~ )                                        |       |
|      | D) 65°                                        |              |              |              |               | 115°                                       |       |
|      |                                               |              |              | 6            | `             | В                                          |       |
|      | For visually                                  | Impaired s   | students on  | ly           |               |                                            |       |
|      |                                               |              |              |              |               | angent XAY is drawr<br>at a distance 18 cn |       |
|      | A) 24 cm                                      |              |              |              |               |                                            |       |
|      | B) 25 cm                                      |              |              |              |               |                                            |       |
|      | C) 26 cm                                      |              |              |              |               |                                            |       |
|      | D) 18 cm                                      |              |              |              |               |                                            |       |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page **4** of **11** 



| Q17. | The circumferences of two circles are in the ratio 3 : 4. The ratio of their areas is  A) 3 : 4 B) 4 : 3 C) 9 : 16 D) 16 : 9                                                                                                                                                                                                                                                                                                                                                  | 1 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Q18. | An event is most unlikely to happen. Its probability is  A) 0.0001 B) 0.001 C) 0.01 D) 0.1  Each of the following questions contains two statements i.e., ASSERTION and REASON, and has following four choices. Only one of which is the                                                                                                                                                                                                                                      | 1 |
|      | correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Q19. | ASSERTION (A): Line joining the midpoints of two sides of triangle is parallel to the third side.  REASON (R): If a line divides two sides of a triangle in the same ratio then it is                                                                                                                                                                                                                                                                                         | 1 |
|      | <ul> <li>parallel to the third side.</li> <li>A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).</li> <li>B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).</li> <li>C) Assertion (A) is true but reason (R) is false.</li> <li>D) Assertion (A) is false but reason (R) is true.</li> </ul>                                                               |   |
| Q20. | <b>ASSERTION (A)</b> : Two coins are tossed simultaneously. Possible outcomes are two heads, one head and one tail, two tails. Hence, the probability of getting two heads is $\frac{1}{3}$ .                                                                                                                                                                                                                                                                                 | 1 |
|      | <ul> <li>REASON (R): Probabilities of 'equally likely' outcomes of an experiment are always equal.</li> <li>A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).</li> <li>B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).</li> <li>C) Assertion (A) is true but reason (R) is false.</li> <li>D) Assertion (A) is false but reason (R) is true.</li> </ul> |   |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26



|      | SECTION – B                                                                                                                                                                                                                                                                 |   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | (Very Short Answers)                                                                                                                                                                                                                                                        |   |
|      | This section comprises of VSA of 2 marks each                                                                                                                                                                                                                               |   |
| Q21. | (A) Show that the number $2 \times 5 \times 7 \times 11 + 11 \times 13$ is a composite number.  OR                                                                                                                                                                          | 2 |
|      | (B) Find the smallest number which is divisible by both 306 and 657.                                                                                                                                                                                                        |   |
| Q22. | Find the radius of the circle with centre at origin, if line $l$ given by $x + y = 5$ is tangent to the circle at point P.  C(0, 0)  P(3, a)  For visually Impaired students only  Find the radius of the circle whose end points of a diameter are $(0, 0)$ and $(6, 8)$ . | 2 |
| 000  |                                                                                                                                                                                                                                                                             | 2 |
| Q23. | If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and – 3, then find the values of $a$ and $b$ .                                                                                                                                                         | 2 |
| Q24. | Find the nature of roots of the quadratic equation $x^2 + 4x - 3\sqrt{2} = 0$ .                                                                                                                                                                                             | 2 |
| Q25. | (A) Evaluate : $2 \sin 30^{\circ} \tan 60^{\circ} - 3 \cos^2 60^{\circ} \sec^2 30^{\circ}$                                                                                                                                                                                  |   |
|      | OR  (B) If $\sin x = \frac{7}{25}$ , where $x$ is an acute angle, then find the value of $\sin x \cdot \cos x (\tan x + \cot x)$ .                                                                                                                                          | 2 |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26



# SECTION - C (Short Answers)

This section comprises of SA type questions of 3 marks each

| Q26. | Show that $\sqrt{2} - \sqrt{5}$ is an irrational number. |
|------|----------------------------------------------------------|

3

Q27. (A) The frequency distribution table of agriculture holdings in a village is given below:

| Area of land (in hectares) | 1 – 3 | 3-5 | 5 – 7 | 7 – 9 | 9 – 11 | 11 – 13 |
|----------------------------|-------|-----|-------|-------|--------|---------|
| No. of families            | 20    | 45  | 80    | 55    | 40     | 12      |

Find the modal agriculture holdings of the village.

3

OR

**(B)** If the mean of the following distribution is 54, find the value of p.

| Class Interval | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
|----------------|--------|---------|---------|---------|----------|
| Frequency      | 7      | р       | 10      | 9       | 13       |

Q28. A quadrilateral ABCD is drawn to circumscribe a circle, as shown in the given

3

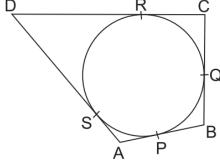



figure. Show that  $\frac{AB + CD}{AD + BC} = 1$ 

For visually Impaired students only

Show that parallelogram circumscribing a circle is a rhombus.

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

| Q29. | (A) On a particular day, 50000 people attended a Cricket Test Match between India and Australia in Sydney Cricket Ground. Let <i>x</i> be the number of adults attended the cricket match and <i>y</i> be the number of children attended the cricket match. Cost of an adult ticket was ₹1000 while cost of a child ticket was ₹200. On that day Revenue earned by selling all 50,000 tickets, was ₹4,20,00,000. Find how many adults and how many children attended the cricket match? | 3 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | (B) Solve for $x$ and $y$ , graphically: $2x + y = 6$ ; $x + y = 5$                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | For visually Impaired students only                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | (A) On a particular day, 50000 people attended a Cricket Test Match between India and Australia in Sydney Cricket Ground. Let <i>x</i> be the number of adults attended the cricket match and <i>y</i> be the number of children attended the cricket match. Cost of an adult ticket was ₹1000 while cost of a child ticket was ₹200. On that day Revenue earned by selling all 50,000 tickets, was ₹4,20,00,000. Find how many adults and how many children attended the cricket match. |   |
|      | (B) A 2-digit number is 6 times the sum of its digits. The number formed by                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | reversing the digits is 9 less than the given number. Find the number.                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Q30. | Prove that : $(\sin x - \cos x + 1) \cdot (\sec x - \tan x) = (\sin x + \cos x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                     | 3 |
| Q31. | The sum of first $n$ terms of an AP is $5n^2 - n$ . Find the $n$ <sup>th</sup> term of the AP.                                                                                                                                                                                                                                                                                                                                                                                           | 3 |
|      | SECTION – D  (Long Answers)  This section comprises of LA type questions of 5 marks each                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Q32. | Prove that a line drawn parallel to one side of a triangle intersecting other two sides in distinct points, divides the other two sides in the same ratio.                                                                                                                                                                                                                                                                                                                               | 5 |
| Q33. | (A) The numerator of a fraction is 3 less than its denominator. If 2 is added to both of its numerator and denominator then the sum of the new fraction and original fraction is $\frac{29}{20}$ . Find the original fraction.                                                                                                                                                                                                                                                           | 5 |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | <b>(B)</b> A train covers a distance of 300 km at a uniform speed. If the speed of the train is increased by 5 km/hr, it takes 2 hours less in the journey. Find the original speed of the train.                                                                                                                                                                                                                                                                                        |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

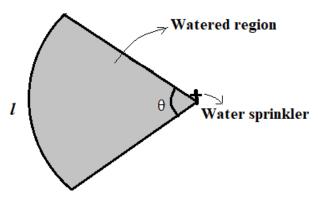
<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26



| Q34. | (A) The angle of elevation of the top of a chimney from the foot of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of the tower is 40 meters, find the height of the chimney. Also, find the length of the wire tied from the top of the chimney to the top of tower. OR                                                                                                                                                                                                                                                                         | 5      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|      | <b>(B)</b> The angles of depression of the top and bottom of a 50m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building. ( $Use \sqrt{3} = 1.73$ )                                                                                                                                                                                                                                                                                                                                                           |        |
| Q35. | A solid toy is in the form of a hemisphere surmounted by a right circular cone of height 2cm and diameter of base 4cm. If a right circular cylinder circumscribes the toy, find the difference of the volumes of the cylinder and the toy. [ <i>Use</i> $\pi$ = 3.14]                                                                                                                                                                                                                                                                                                                                                   | 5      |
| This | SECTION - E (Case-study Based Questions) s section comprises of 3 case-study based questions of 4 marks each with three sub-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oarts. |
| Q36. | Carpooling is the sharing of car journeys so that more than one person travels in a car, and prevents the need for others to have to drive to a location themselves. By having more people using one vehicle, carpooling reduces each person's travel costs such as: fuel costs, tolls, and the stress of driving. Carpooling is also a more environmentally friendly and sustainable way to travel as sharing journeys reduces air pollution, carbon emissions, traffic congestion on the roads, and the need for parking spaces.  Three friends Amar, Bhavin and Chetanya live in societies represented by the points |        |
|      | A(4,5), B(6,2) and C(2,6) respectively. They all work in offices located in a same building represented by the point O(0,0). Since they all go to same building every day, they decided to do carpooling to save money on petrol. Based on the above information, answer the following questions.                                                                                                                                                                                                                                                                                                                       |        |
|      | i) What is the distance between B and C?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
|      | ii) If Bhavin and Chetanya planned to meet at a club situated at the mid-point of the line joining the points B and C, find the coordinates of this point.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |
|      | iii) <b>(A)</b> Which society is farthest from the office? Also find its distance from the office. <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      |

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26




www.studentbro.in

(B) Out of B and C which society is nearer to A? Also find their distances.

Q37. A water sprinkler is a device used to irrigate agricultural crops, lawns, landscapes, golf courses, and other areas. Water sprinklers can be used for residential, industrial, and agricultural usage.



. A water sprinkler is set to shoot a stream of water a distance of 21 m and rotate through an angle which is equal to complementary angle of 10°.



- i) What is the area of sector in terms of arc length?
- ii) What is the area of the watered region (in terms of  $\pi$ )?
- iii) (A) If the radius(r) changes to 28m, find the angle  $\theta$  so that the area of the watered region remains the same.

OR

**(B)** If the radius(r) is increased from 21m to 28m and the angle remains the same, what is the increase in the area of the watered region?

**CLICK HERE** 

www.studentbro.in

1

2

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

The data below shows the distribution of the blood types and Rhesus types of given blood type for a **Blood Donation Center** recorded (in percentages) for the year 2023.

| BLOOD<br>GROUP | RHESUS<br>FACTOR | NUMBER<br>OF<br>PERSONS<br>(in %) |
|----------------|------------------|-----------------------------------|
| 0              | 0-               | x                                 |
|                | 0+               | 30                                |
| А              | Α-               | 8                                 |
|                | A <b>+</b>       | 24                                |
| В              | B <b>-</b>       | 6                                 |
|                | B*               | 18                                |
| AB             | AB -             | 1                                 |
| AD             | AB+              | 3                                 |

Rhesus negative which is written as O



- i) Find the value of x.
- ii) Find the probability that a randomly selected person has a Rhesus negative blood type.
- iii) (A) What is the probability that the person selected from the record is Rhesus positive but neither blood type A nor B?

OR

**(B)** People with blood type AB positive (AB+) are known as the universal recipient and with blood type O negative (O<sup>-</sup>) are known as universal donor. Find the probability of a selected person to be neither universal recipient nor universal donor.

1

2

<sup>\*</sup>Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

# **MATHEMATICS BASIC - Code No. 241 MARKING SCHEME** CLASS - X (2025 - 26)

|        | SECTION - A                                                                                                                                                                                                                                              |       |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Q. No. | Answer                                                                                                                                                                                                                                                   | Marks |  |  |
| 1.     | <b>Answer – D</b> As, $2025 = 3^4 \times 5^4$                                                                                                                                                                                                            | 1     |  |  |
|        | So, the exponent of 3 in the prime factorization of 2025 is 4                                                                                                                                                                                            |       |  |  |
| 2.     | Answer – B On subtracting first equation from second equation, we get $2025x + 2024y - 2024x - 2025y = -1 - 1 \implies (x - y) = -2$                                                                                                                     | 1     |  |  |
| 3.     | Answer – D As, $f(x) = k(x+2)(x-5) \Rightarrow f(x) = k(x^2 - 3x - 10), k \neq 0$ Since k can be any real number. So, there are Infinitely many such polynomials.                                                                                        | 1     |  |  |
| 4.     | Answer – C On simplification, given equations reduce to                                                                                                                                                                                                  | 1     |  |  |
|        | (A) $x^2 + 2x - 2 = 0$ (Quadratic Equation)                                                                                                                                                                                                              |       |  |  |
|        | (B) $2x^2 - 3x - 1 = 0$ (Quadratic Equation)                                                                                                                                                                                                             |       |  |  |
|        | (C) $3x + 1 = 0$ (NOT a Quadratic Equation)                                                                                                                                                                                                              |       |  |  |
|        | (D) $4x^2 + x = 0$ (Quadratic Equation)                                                                                                                                                                                                                  |       |  |  |
| 5.     | Answer – A                                                                                                                                                                                                                                               | 1     |  |  |
|        | As, $2(x + 10) = (3x + 2) + 2x \Longrightarrow x = 6$                                                                                                                                                                                                    |       |  |  |
| 6.     | Answer – B                                                                                                                                                                                                                                               | 1     |  |  |
|        | As, $\frac{50(51)}{2} = 25k \implies k = 51$                                                                                                                                                                                                             |       |  |  |
| 7.     | Answer – D                                                                                                                                                                                                                                               | 1     |  |  |
| ••     | Distance between the given points = $\sqrt{(\frac{1}{2} - \frac{\sqrt{3}}{2})^2 + (\frac{1}{2} + \frac{\sqrt{3}}{2})^2} = \sqrt{2}$                                                                                                                      | •     |  |  |
| 8.     | Answer – C                                                                                                                                                                                                                                               | 1     |  |  |
|        | We know that, for the coordinates of a mirror image of a point in $x$ -axis, abscissa remains the same and ordinate will be of opposite sign of the ordinate of given point. So, the Mirror image of the point $(-3, 5)$ about $x$ -axis is $(-3, -5)$ . |       |  |  |
| 9.     | Answer – B                                                                                                                                                                                                                                               | 1     |  |  |
|        | As, $\triangle ABC \sim \triangle EFD \implies \angle A = \angle E$                                                                                                                                                                                      |       |  |  |

Page **1** of **11** 

| 10. | Answer – B                                                                                                                                                      | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 10. |                                                                                                                                                                 | 1 |
|     | As, $\triangle ABC \sim \triangle PQR \Rightarrow \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{1}{2} \Rightarrow PQ = 6 \text{ cm}, QR = 8 \text{ cm}$ |   |
|     | Perimeter of the triangle PQR (in cm) = 6 + 8 +10 = 24                                                                                                          |   |
|     | Question given for Visually impaired candidates                                                                                                                 | 1 |
|     | Answer – B                                                                                                                                                      |   |
|     | The solution is same as above.                                                                                                                                  |   |
| 11. | Answer – A                                                                                                                                                      | 1 |
|     | From the figure, AE = $24 - r = AF$ . So, BF = $1 + r = 7 - r \Rightarrow r = 3$ cm                                                                             |   |
|     | Question given for Visually Impaired candidates                                                                                                                 |   |
|     | Answer – B                                                                                                                                                      | 1 |
|     | As, PQ = PR = 24 cm                                                                                                                                             |   |
|     | So, Area of Quadrilateral PQOR (in cm <sup>2</sup> ) = $2 \times \frac{1}{2} \times 24 \times 10 = 240$                                                         |   |
| 12. | Answer – B                                                                                                                                                      | 1 |
|     | As, $\cot^2 \mathbf{x} - \csc^2 \mathbf{x} = -1$ , so it is <b>NOT</b> equal to Unity                                                                           |   |
| 13. | Answer – C                                                                                                                                                      | 1 |
|     | As, Median class is 10-15. So, its upper limit is 15.                                                                                                           |   |
| 14. | Answer – C                                                                                                                                                      | 1 |
|     | Since, 3 Median = Mode + 2 Mean. So, $\mathbf{a} = 3 \& \mathbf{b} = 2$ .<br>Thus, $(2\mathbf{b} + 3\mathbf{a}) = 4 + 9 = 13$                                   |   |
| 4.5 |                                                                                                                                                                 |   |
| 15. | <b>Answer – B</b> Radius (in cm) = $\sqrt{13^2 - 12^2} = 5$                                                                                                     | 1 |
|     |                                                                                                                                                                 |   |
| 16. | Answer – A                                                                                                                                                      | 1 |
|     | As, ∠PAO= 90°. So, ∠APO = 115° − 90° = 25°                                                                                                                      |   |
|     | Question given for Visually Impaired candidates                                                                                                                 | 1 |
|     | Answer – A                                                                                                                                                      |   |
|     | As, the chord is at a distance of 18 cm (more than the radius). So, the chord                                                                                   |   |
|     | will be at a distance of 5 cm on the opposite side of the centre. Thus, length of the chord CD will be $2\sqrt{13^2 - 5^2} = 24 cm$                             |   |
| 17. | Answer – C                                                                                                                                                      | 1 |
|     | As, $r_1 : r_2 = 3 : 4$ . So, the ratio of their areas = $r_1^2 : r_2^2 = 9 : 16$                                                                               |   |
| 18. | Answer – A                                                                                                                                                      | 1 |
|     | Since, the event is most unlikely to happen. Therefore, its probability is 0.0001                                                                               |   |
| 19. | Answer – A                                                                                                                                                      | 1 |
|     | As, Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).                                                      |   |
| l   | explanation of absorber (11).                                                                                                                                   |   |

Page **2** of **11** 

| 20.     | Answer – D                                                                                                                                                                                      | 1       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|         | Since events given in Assertion are not equally likely, so probability of getting                                                                                                               |         |
|         | two heads is not $\frac{1}{3}$ .                                                                                                                                                                |         |
|         | Thus, Assertion (A) is false but reason (R) is true.                                                                                                                                            |         |
| [This s | Section –B ection comprises of solution of very short answer type questions (VSA) of 2 mark                                                                                                     | s each] |
| 21 (A). | It can be observed that,                                                                                                                                                                        |         |
|         | $2 \times 5 \times 7 \times 11 + 11 \times 13 = 11 \times (70 + 13) = 11 \times 83$ which is the product of two factors other than 1. Therefore, it is a composite                              | 1<br>1  |
|         | number.  OR                                                                                                                                                                                     |         |
| 21 (B). | The smallest number which is divisible by any two numbers is their LCM.                                                                                                                         | 1/2     |
|         | So, Number which is divisible by both 306 and 657 = LCM (306, 657)                                                                                                                              | /2      |
|         | Since, $306 = 2^1 \times 3^2 \times 17^1$ and $657 = 3^2 \times 73$                                                                                                                             | 1       |
|         | LCM (306, 657) = $2^1 \times 3^2 \times 17^1 \times 73 = 22338$                                                                                                                                 | 1/2     |
| 22.     | As, P(3, a) lies on the line L, so $3 + a = 5 \Rightarrow a = 2$                                                                                                                                | 1       |
|         | Now, the radius of the circle = $CP = \sqrt{3^2 + 2^2} = \sqrt{13} \ units$                                                                                                                     | 1       |
|         | Question given for Visually Impaired candidates                                                                                                                                                 |         |
|         | Diameter of the circle = Distance between (0,0) and (6,8) = $\sqrt{6^2 + 8^2} = 10$                                                                                                             | 1½      |
|         | Radius of the circle = ½ (Diameter of the circle) = 5 units                                                                                                                                     | 1/2     |
| 23.     | Sum of the zeroes = $2 - 3 = -(a + 1) \Rightarrow a = 0$<br>Product of the zeroes = $-6 = b \Rightarrow b = -6$                                                                                 | 1       |
|         | Hence, $a = 0 \& b = -6$                                                                                                                                                                        | 1       |
| 24.     | Discriminant, D = $16 + 12\sqrt{2} > 0$<br>As, Discriminant is positive. So, Roots are real and distinct.                                                                                       | 1       |
| 25 (A). | $2 \sin 30^{\circ} \tan 60^{\circ} - 3 \cos^2 60^{\circ} \sec^2 30^{\circ} = 2 \left(\frac{1}{2}\right) \left(\sqrt{3}\right) - 3 \left(\frac{1}{2}\right)^2 \left(\frac{2}{\sqrt{3}}\right)^2$ | 11/2    |
|         | $=\sqrt{3}-1$                                                                                                                                                                                   | 1/2     |
|         | OR                                                                                                                                                                                              |         |
| 25 (B). | As, $sinx. cosx(tanx + cotx) = sinx. cosx(\frac{sinx}{cosx} + \frac{cosx}{sinx})$ .                                                                                                             | 1/2     |
|         | $= \sin x. \cos x \left(\frac{1}{\cos x. \sin x}\right)$                                                                                                                                        |         |
|         | = 1 (Constant)                                                                                                                                                                                  | 11/2    |
|         | Since, the value of sinx. cosx (tanx + cotx) is constant, so its equal 1 for all angles.                                                                                                        |         |

Page **3** of **11** 

### Section -C

# [This section comprises of solution short answer type questions (SA) of 3 marks each]

| 26. | To prove that $(\sqrt{2} - \sqrt{5})$ is an irrational number, we will use the contradiction |
|-----|----------------------------------------------------------------------------------------------|
|     | Method.                                                                                      |

Let, if possible,  $\sqrt{2} - \sqrt{5} = x$ , where x is any rational number (Clearly  $x \neq 0$ ) so,  $\sqrt{2} = x + \sqrt{5} \Longrightarrow 2 = \left(x + \sqrt{5}\right)^2$ 

$$\Rightarrow 2 = x^2 + 5 + 2\sqrt{5}x$$

$$\Rightarrow -x^2 - 3 = 2\sqrt{5}x$$

$$\Longrightarrow \frac{-x^2-3}{2x} = \sqrt{5} \dots (1)$$

(Note:  $\sqrt{5}$  is an irrational number, as the square root of any prime number is Always an irrational number)

In equation (1), LHS is a rational number while RHS is an irrational number but an irrational number cannot be equal to a rational number. So, our assumption is wrong.

Thus,  $(\sqrt{2} - \sqrt{5})$  is an irrational number.

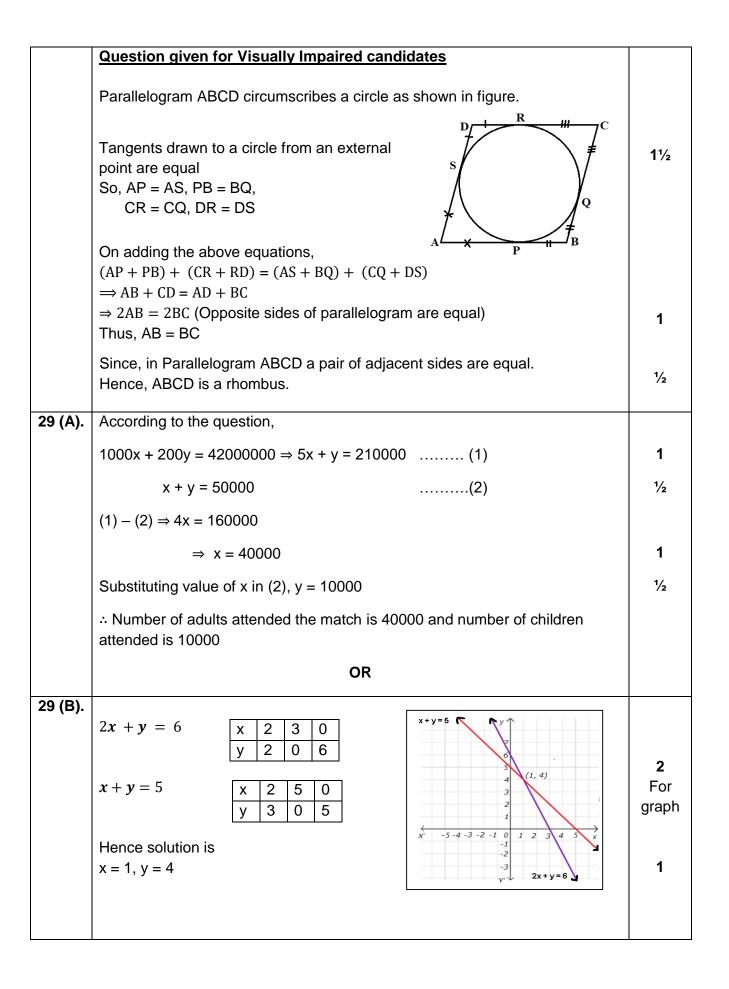
1

1

# 27 (A).

|             | Area of land  | No. of   |       |
|-------------|---------------|----------|-------|
|             | (in hectares) | families |       |
|             | 1 – 3         | 20       |       |
|             | 3 – 5         | 45       | $f_0$ |
| Modal class | 5 – 7         | 80       | $f_1$ |
|             | 7 – 9         | 55       | $f_2$ |
|             | 9 – 11        | 40       |       |
|             | 11 – 13       | 12       |       |

2


 $\therefore$  Modal class = 5 – 7, I = 5, h = 2

Mode = 
$$I + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h = 5 + \left(\frac{80 - 45}{2(80) - 45 - 55}\right)2 = 6.166...$$

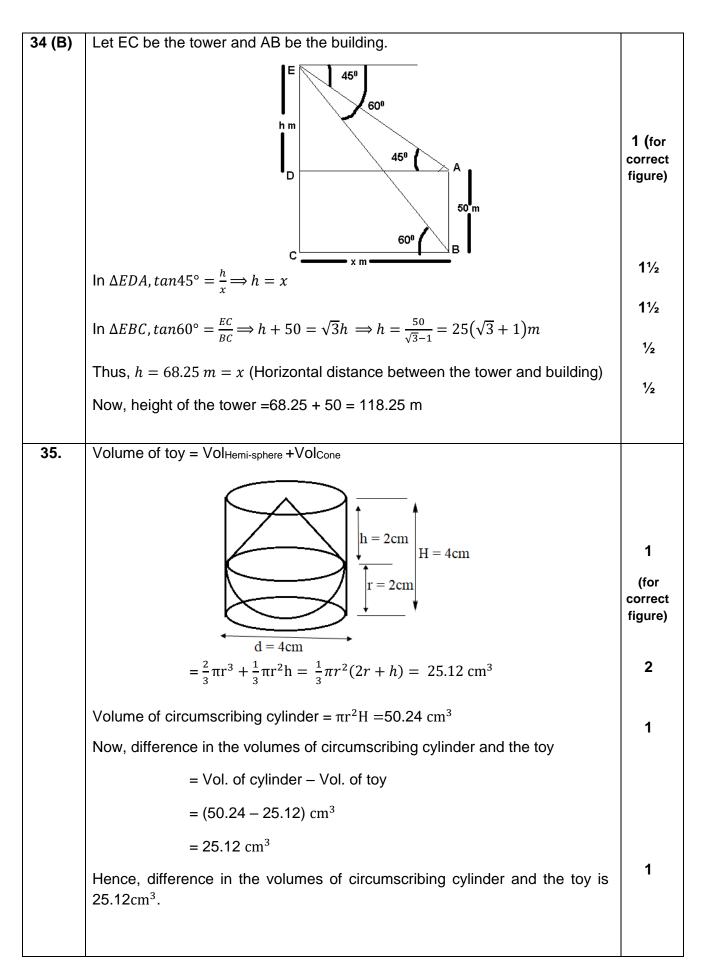
Hence, modal agriculture holdings of the village is 6.17 hectare (approx.)

OR

| 7 (B).         |                                                        |                                                 |                                   |                            |                               |       |
|----------------|--------------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------------|-------------------------------|-------|
|                | Class interval                                         | fi                                              | x <sub>i</sub><br>(Mid-<br>value) | $d_i = \frac{x_i - 30}{h}$ | f <sub>i</sub> d <sub>i</sub> |       |
|                | 0-20                                                   | 7                                               | 10                                | -1                         | <b>-</b> 7                    |       |
|                | 20-40                                                  | р                                               | 30                                | 0                          | 0                             |       |
|                | 40-60                                                  | 10                                              | 50                                | 1                          | 10                            |       |
|                | 60-80                                                  | 9                                               | 70                                | 2                          | 18                            | 2     |
|                | 80-100                                                 | 13                                              | 90                                | 3                          | 39                            |       |
|                | Total                                                  | 39 + p                                          |                                   |                            | 60                            |       |
| As             | sumed mean(A) = $36$                                   | 0, Width of                                     | the interval (h                   | n) = 20                    |                               |       |
| Me             | ean = $30 + \frac{60}{39+p} \times 20$                 | $= 54 \Longrightarrow 50$                       | $= 39 + p \Longrightarrow$        | p = 11                     |                               | 1     |
| 28.            | P F                                                    | ₹ Ç                                             |                                   |                            |                               |       |
| 26.            | SA                                                     | C B B                                           | )                                 |                            |                               |       |
|                | angents drawn to a ci                                  |                                                 | n external poi                    | nt are equal.              |                               |       |
|                |                                                        | ircle from ar<br>3 = BQ,                        | )<br>n external poi               | nt are equal.              |                               | 111/2 |
| Та             | ingents drawn to a ci                                  | ircle from ar<br>B = BQ,<br>R = DS              | n external poi                    | nt are equal.              |                               | 1½    |
| Ta             | So, AP = AS, PE<br>CR = CQ, D                          | ircle from ar<br>B = BQ,<br>R = DS<br>quations, |                                   |                            |                               | 11/2  |
| Ta<br>Or<br>(A | So, AP = AS, PE<br>CR = CQ, Do<br>a adding the above e | ircle from ar<br>B = BQ,<br>R = DS<br>quations, |                                   |                            |                               | 1½    |



mww.studentbro.in


|     | Question given for Visually Impaired candidates                                                             |      |
|-----|-------------------------------------------------------------------------------------------------------------|------|
|     | 29(A) Solution and marks distribution is same as above                                                      |      |
|     | OR                                                                                                          |      |
|     | 29(B) Let unit place digit be x & tens place digit be y                                                     |      |
|     | <ul><li>∴ original number = 10y+x</li><li>Reversed number = 10x+y</li></ul>                                 |      |
|     | Given, $10y + x = 6(x + y)$                                                                                 |      |
|     | $\Rightarrow 5x - 4y = 0 \dots (1)$                                                                         | 1    |
|     | And $(10y + x) - (10x + y) = 9$                                                                             |      |
|     | $\Rightarrow -9x + 9y = 9$                                                                                  | 1    |
|     | $\Rightarrow x - y = -1 \dots (2)$ On solving (1) and (2), we get $y = 4$ , $y = 5$                         | 1    |
|     | On solving (1) and (2), we get x = 4, y= 5 ∴ The number is 54                                               | -    |
|     |                                                                                                             |      |
| 30. | $LHS = (\sin x - \cos x + 1). (\sec x - \tan x)$                                                            |      |
|     | $= (\sin x - \cos x + 1) \cdot \left(\frac{1 - \sin x}{\cos x}\right)$                                      | 1    |
|     | $= (1 + \sin x) \left( \frac{1 - \sin x}{\cos x} \right) - \cos x \left( \frac{1 - \sin x}{\cos x} \right)$ |      |
|     | ( cosx )                                                                                                    | 1    |
|     | $= \left(\frac{1-\sin^2 x}{\cos x}\right) - (1-\sin x)$                                                     |      |
|     | $= \frac{\cos^2 x}{\cos x} - 1 + \sin x = \sin x + \cos x - 1 = RHS$                                        | 1    |
| 31. | $As, S_n = 5n^2 - n$                                                                                        |      |
|     | Now, nth Term is given by $a_n = S_n - S_{n-1}$                                                             | 1/2  |
|     | $a_n = [5n^2 - n] - [5(n-1)^2 - (n-1)]$                                                                     | 1    |
|     | $a_n = 5[n^2 - (n-1)^2] - [n - (n-1)]$                                                                      |      |
|     | $a_n = 5[2n-1] - [1]$                                                                                       |      |
|     | $a_n = 10n - 6$                                                                                             | 11/2 |
| [Th | Section –D is section comprises of solution of long answer type questions (LA) of 5 marks ea                | ach] |
| 32. | Given: In ΔABC, a line / drawn parallel to side BC intersects AB and AC at D and E respectively.            | 1/2  |
|     | To prove: $\frac{AD}{DB} = \frac{AE}{EC}$                                                                   | 1/2  |
|     | Construction: Draw perpendicular from D and E to AC and AB i.e., DM⊥AC and EN⊥AB. Join DC and BE.           | 1/2  |
|     |                                                                                                             |      |

|        | Proof: $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{\frac{1}{2}(AD)(EN)}{\frac{1}{2}(BD)(EN)} = \frac{AD}{DB} \dots (1)$ $\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{\frac{1}{2}(AE)(DM)}{\frac{1}{2}(EC)(DM)} = \frac{AE}{EC} \dots (2)$                 | 1/2<br>(for<br>correct<br>figure)<br>1 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|        | Also, $ar(\Delta BDE) = ar(\Delta CED)$ (3)<br>(Triangles on same base and between same parallel are equal in area)                                                                                                                                            | 1/2                                    |
|        | From (1), (2) & (3), we get $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{ar(\Delta ADE)}{ar(\Delta CED)}$                                                                                                                                                    | 1                                      |
|        | $\Rightarrow \frac{AD}{DB} = \frac{AE}{EC}  (Hence proved)$                                                                                                                                                                                                    |                                        |
| 33 (A) | Let the denominator of the required fraction be x                                                                                                                                                                                                              |                                        |
|        | Then, its numerator = $x - 3$                                                                                                                                                                                                                                  |                                        |
|        | So, the original fraction is $\frac{x-3}{x}$                                                                                                                                                                                                                   | 1                                      |
|        | Given,                                                                                                                                                                                                                                                         |                                        |
|        | $\frac{(x-3)+2}{x+2} + \frac{(x-3)}{x} = \frac{29}{20}$ $\frac{(x-1)}{x+2} + \frac{(x-3)}{x} = \frac{29}{20}$ $\frac{(x-1)x + (x-3)(x+2)}{(x+2)x} = \frac{29}{20}$ $\frac{x^2 - x + x^2 - x - 6}{x^2 + 2x} = \frac{29}{20}$ $20(2x^2 - 2x - 6) = 29(x^2 + 2x)$ | 1                                      |
|        | $11x^{2} - 98x - 120 = 0$ $11x^{2} - 110x + 12x - 120 = 0$ $11x(x - 10) + 12(x - 10) = 0$ $(11x + 12)(x - 10) = 0$                                                                                                                                             | 11/2                                   |
|        | $x = 10$ or $x = -\frac{12}{11}$ (not possible as it is not an integer)                                                                                                                                                                                        | 1                                      |
|        | $ \therefore x = 10 $ Hence, the required fraction is $\frac{7}{10}$                                                                                                                                                                                           | 1/2                                    |
|        | OR                                                                                                                                                                                                                                                             |                                        |

Page **8** of **11** 

www.studentbro.in

| 33 (B) | Let the original speed of the train be x km/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|        | Distance travelled be 300km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|        | ∴ Original time $(t_0) = \frac{300}{x} hr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2                |
|        | New speed of the train = (x+5) km/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|        | $\therefore \text{ New time } (t_n) = \frac{300}{x+5} \text{ hr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/                 |
|        | Given,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2                |
|        | $t_0 - t_0 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|        | $\frac{300}{x} - \frac{300}{x+5} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  |
|        | $\frac{1}{x} - \frac{1}{x+5} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                  |
|        | $\frac{300(x+5) - 300(x)}{x(x+5)} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|        | $\frac{1500}{x^2 + 5x} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|        | $x^2 + 5x - 750 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/2               |
|        | x + 5x - 750 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|        | $x^2 + 30x - 25x - 750 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|        | x(x+30) - 25(x+30) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |
|        | (x - 25)(x + 30) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|        | x = 25 or $x = -30$ (not possible as speed cannot be negative)<br>$\therefore x = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2                |
|        | ·· x = 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|        | Hence, the original speed of the train is 25km/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 34 (A) | Let BA be the Chimney and CD be the tower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|        | Chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|        | A Company of the comp |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|        | Tower D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (for             |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | correct<br>figure) |
|        | 30° 60° 40m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                  |
|        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|        | In $\triangle CBD$ , $tan30^{\circ} = \frac{40}{BC} \Longrightarrow BC = 40\sqrt{3} m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|        | In $\triangle ABC$ , $tan60^{\circ} = \frac{AB}{40\sqrt{3}} \Longrightarrow AB = 120 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/2               |
|        | $AE = (120 - 40) \text{ m} = 80 \text{m}, ED = BC = 40\sqrt{3} \text{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|        | Now, $AD = \sqrt{AE^2 + ED^2} = \sqrt{6400 + 4800} = 40\sqrt{7} m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41/                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/2               |
|        | Thus, length of wire tied from the top of the chimney to the top of tower is $40\sqrt{7} \ m$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |
|        | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |



## Section -E

[This section comprises solution of 3 case- study based questions of 4 marks each with three sub parts of 1, 1 and 2 marks each respectively]

|     | parts of 1, 1 and 2 marks each respectively]                                                                            | T      |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------|
| 36. | (i) Distance between B and C = $4\sqrt{2}$ units                                                                        | 1      |
| 00. | (ii) Mid-point of the line joining the points B and C = (4, 4)                                                          | 1      |
|     | (iii) <b>(A)</b> As, OA = $\sqrt{41}$ units, OB = $\sqrt{40}$ units, OC = $\sqrt{40}$ units                             | 11/2   |
|     | So, society A is the farthest from the office.                                                                          | 1/2    |
|     | OR                                                                                                                      |        |
|     | (iii) <b>(B)</b> As, AB = $\sqrt{13}$ units, AC = $\sqrt{5}$ units                                                      | 11/2   |
|     | So, Society C is nearer to society A.                                                                                   | 1/2    |
| 37. | (i) Area of sector = $\frac{(Arc length \times radius)}{2}$                                                             | 1      |
|     | (ii) Area of sector = $\frac{80}{360}\pi \times 441 = 98\pi \ m^2$                                                      | 1      |
|     | (iii) <b>(A)</b> $\frac{80}{360}\pi \times 441 = \frac{\theta}{360}\pi \times 28^2$ $\theta = 45^{\circ}$               | 1<br>1 |
|     | OR                                                                                                                      |        |
|     | (iii) <b>(B)</b> Increase in the area of the lawn watered $=\frac{80}{360}\pi \times (784-441)$                         | 1      |
|     | $= 239.56 \mathrm{m}^2$                                                                                                 | 1      |
| 38. | (i) $x = 100 - (30 - 32 - 24 - 4) = 10$                                                                                 | 1      |
|     | (ii) P(selected person to have Rhesus negative blood type) = $\frac{10+8+6+1}{100}$ = $\frac{25}{100}$ or $\frac{1}{4}$ | 1      |
|     | (iii) <b>(A)</b> P(person is Rhesus positive but neither A nor B type blood)= $\frac{30+3}{100}$ $=\frac{33}{100}$      | 1+1    |
|     | OR                                                                                                                      |        |
|     | (iii) <b>(B)</b> P(person is neither universal recipient nor universal donor) $= 1 - \frac{(3+10)}{100}$                | 1½     |
|     | $= 1 - \frac{13}{100}$ $= \frac{87}{100}$                                                                               | 1/2    |

Page **11** of **11**